QsIA disrupts LasR dimerization in antiactivation of bacterial quorum sensing.
نویسندگان
چکیده
The human pathogen Pseudomonas aeruginosa coordinates the expression of virulence factors by using quorum sensing (QS), a signaling cascade triggered by the QS signal molecule and its receptor, a member of the LuxR family of QS transcriptional factors (LasR). The QS threshold and response in P. aeruginosa is defined by a QS LasR-specific antiactivator (QslA), which binds to LasR and prevents it from binding to its target promoter. However, how QslA binds to LasR and regulates its DNA binding activity in QS remains elusive. Here we report the crystal structure of QslA in complex with the N-terminal ligand binding domain of LasR. QsIA exists as a functional dimer to interact with the LasR ligand binding domain. Further analysis shows that QsIA binding occupies the LasR dimerization interface and consequently disrupts LasR dimerization, thereby preventing LasR from binding to its target DNA and disturbing normal QS. Our findings provide a structural model for understanding the QslA-mediated antiactivation mechanism in QS through protein-protein interaction.
منابع مشابه
Structural basis for antiactivation in bacterial quorum sensing.
Bacteria can communicate via diffusible signal molecules they generate and release to coordinate their behavior in response to the environment. Signal molecule concentration is often proportional to bacterial population density, and when this reaches a critical concentration, reflecting a bacterial quorum, specific behaviors including virulence, symbiosis, and horizontal gene transfer are activ...
متن کاملSocial cheating in Pseudomonas aeruginosa quorum sensing.
In a process termed quorum sensing, bacteria use diffusible chemical signals to coordinate cell density-dependent gene expression. In the human pathogen Pseudomonas aeruginosa, quorum sensing controls hundreds of genes, many of which encode extracellular virulence factors. Quorum sensing is required for P. aeruginosa virulence in animal models. Curiously, quorum sensing-deficient variants, most...
متن کاملIntra-Species Bacterial Quorum Sensing Studied at Single Cell Level in a Double Droplet Trapping System
In this paper, we investigated the intra-species bacterial quorum sensing at the single cell level using a double droplet trapping system. Escherichia coli transformed to express the quorum sensing receptor protein, LasR, were encapsulated in microdroplets that were positioned adjacent to microdroplets containing the autoinducer, N-(3-oxododecanoyl)-L-homoserine lactone (OdDHL). Functional acti...
متن کاملKinetic Model for Signal Binding to the Quorum Sensing Regulator LasR
We propose a kinetic model for the activation of the las regulon in the opportunistic pathogen Pseudomonas aeruginosa. The model is based on in vitro data and accounts for the LasR dimerization and consecutive activation by binding of two OdDHL signal molecules. Experimentally, the production of the active LasR quorum-sensing regulator was studied in an Escherichia coli background as a function...
متن کاملStructure-Based Design and Biological Evaluation of Triphenyl Scaffold-Based Hybrid Compounds as Hydrolytically Stable Modulators of a LuxR-Type Quorum Sensing Receptor
Many common bacterial pathogens utilize quorum sensing to coordinate group behaviors and initiate virulence at high cell densities. The use of small molecules to block quorum sensing provides a means of abrogating pathogenic phenotypes, but many known quorum sensing modulators have limitations, including hydrolytic instability and displaying non-monotonic dose curves (indicative of additional t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 110 51 شماره
صفحات -
تاریخ انتشار 2013